
A Multi - flow Streaming Data Frequent
Pattern Mining Adaptive Algorithm

Fan Feng, Husheng Liao and Xueyun Jin

Faculty of Information Technology, Beijing University of Technology, Beijing, China
Email:littlefun_ff@163.com, liaohs@bjut.edu.cn, jinxueyun@bjut.edu.cn

Keywords: Frequent sequential pattern mining, Stream data, Parallel processing,

Self-adaption.

Abstract. Frequent sequential pattern mining is an important field in data mining.
Compared with the static data, the stream data is a single scan data obtained in a
continuous and real-time way. The frequent pattern mining algorithm of traditional static
sequence database has been difficult to meet the frequent pattern mining requirements for
streaming data. The traditional serial processing method is time-consuming and cannot
meet the requirements of high performance processing. Based on the existing Pisa
algorithm, this paper presents a parallel algorithm named Parallel-Pisa, it can adjust the
parallel strategy according to the different velocity of the stream data to improve the
efficiency of the algorithm so that it can be better applied to frequent sequence pattern
mining of stream data.

1. Introduction

With the development and application of Internet and communication technology, economic, natural
sciences, engineering and other fields have accumulated more and more data. Which has a class of
important data, can reflect the data in the context of the relationship, known as time series data.
Frequent pattern mining for time series data can identify the periodic and frequently occurring
patterns of data in the order of time, helping decision makers to make more informed decisions.

In order to mine frequent patterns in time series data, researchers have made continuous
improvement to the frequent pattern mining of static database. The papers [1, 2, 3] use the
incremental mining concept so that the algorithm can excavate the newly added data set on the basis
of the original static data, which known as incremental mining. At the same time, due to limited
storage space or obsolete data is no longer valuable and other reasons, sometimes need to delete the
excavation of the object. In order to solve this problem, the papers [4,5,6] use the progressive
mining concept to make the algorithm support the increase and deletion of the data set in the mining
process. This mining method is called progressive mining. Parallel-Pisa will use the concept of
progressive mining to mining time series data to find out the cyclical changes and frequent
sequence patterns.

In real life a large amount of time series data are constantly real-time output and difficult to
preserve, such as the real-time data of the stock exchange, interactive data in a network and so on.
This kind of time series is called stream data. The frequent pattern mining of static data can‘t meet

142

The 5th International Conference on Advanced Computer Science Applications and Technologies (ACSAT 2017)

Published by CSP © 2017 the Authors

the deman
[8,9,10] im
room for im
pattern min
to adapt to
streaming
convective
 In view
data minin

1) I
t
m

2) P
a
m

The st
knowledge
frequent se
the fifth Se

2. Prelimin

2.1. Proble

The cha
find out the

Definiti
set of data
same time.
<a1,a2,…,a
set of inte
Frequent S
user-define
times ≥ min

Parallel
pattern min
[4].

nd of real-ti
mproves the
mprovemen
ning algorit
o the fast an
data, and t

e data.
w of the ab

ng of multi-d
Implements
the mining e
multi-data s
Proposes a
adjust the e
more reason
tructure of t
e, and the t
equence pat
ection gives

naries

em Descrip

aracteristics
e sequence
ion 1(Freq
items. An

. Sequence
an> is a sub
gers, 1 ≤ i1

Sequence Pa
ed minimum
n_sup."
-Pisa is bas
ning algorit

Figur

ime and tim
 progressiv

nt in terms o
thm for stre
nd large flo
there is no

bove proble
data flow, an
 a frequent
efficiency o

stream data
strategy to

explosive gr
nable to use
this paper is
third part in
ttern mining
s the relevan

ption

 of the strea
patterns tha
uent patter
element set
s = <e1,e2,

bsequence o
1 < i2 < …
attern Minin
m support m

sed on the
thm of mult

 (a

re 1 (a) Mul

meliness of
e frequent p
of time con

eaming data
ow data, wh
higher load

ems, this pa
nd the main
pattern min

of the algori
model.
 adaptive a
rowth or su
the system

s as follows
ntroduces th
g. The four
nt experime

am data are:
at frequently
rn mining
t e � I deno
…,em>, con
f another se
 < in ≤ m.
ng can be d
min_sup, fin

data structu
ti-data flow

a)

lti-flow data

f mining fre
pattern min

nsumption a
a is mainly b
hich can’t m
d handling

aper studies
n contributio
ning algorit

rithm so tha

adjust the p
udden decre

m resources
s: In the sec
the parallel
rth section i
ent and test r

: fast, massi
y occur amo
on multipl
oted by (xix
nsists of a s
equence β =
 Data flow
defined as "

nd the comp

ture PS-tree
w is describe

a example.

equent data
ning for stre
and space co
based on se
meet the req
capability

s an adaptiv
ons are as fo
thm for par

at it can carr

parallel algo
ease of the

cond section
design ide

introduces t
results of th

ive, and so o
ong multipl
le data stre
xj…) is a su
series of ord
= <b1,b2,…,

w Fi contain
"Given a nu
plete set of

e (section 2
ed in detail

Set of d
Set o

(b) Ordinar

in the per
eam data, bu
onsumption
erial process
quirement o
to face the

ve parallel a
ollows:
rallel proces
ry out frequ

orithm so t
number of

n, we introd
a and algor
the adaptive
he algorithm

on. The aim
e data stream
eams). Let

ubset of item
dered data i
bn>, means

ns a set of s
umber of da
f subsequen

2.2) in [4],
 in Figure 1

 (b)

label
data stream ID
of timestamp

ry node stru

rformance.
ut there is s

n. The curre
sing, which
of real-time

e explosive

algorithm f

ssing, whic
uent pattern

that the alg
f flow data

duce some p
orithm princ
e parallel st

m.

m of our alg
ams.

I = {x1,x2,
ms which ap
items. A seq
s α�β, if th
sequences.

ata flow F1
nces whose

and then th
1(a) as the

ucture.

The papers
still a lot of
ent frequent
h is difficult
e mining of
changes in

for frequent

h improves
n mining on

gorithm can
to make it

preliminary
ciple of the
trategy, and

orithm is to

….,xn} be a
ppear at the
quence α =

here exists a
Multi-flow
to Fn and a
occurrence

he frequent
example in

s
f
t
t
f
n

t

s
n

n
t

y
e
d

o

a
e

a
w
a
e

t
n

143

In Figure 1(a), S01, S02,..., Sn represent different data flows, A, B, C, and D represent different
data items, t1、t2、...、tk represent timestamps, the data contained in the timestamp ti represents a
different set of data items e. As time goes on, each stream continues to deliver real-time streaming
data. Dbp,q represents a collection of data items in each data stream between timestamp p and
timestamp q.

2.2. PS-tree

This section introduces the PS-tree data structure (PS) which is borrowed from [4]. There are
two kinds of nodes in the PS. The root node stores only a series of ordinary nodes as his child nodes.
The data structure of the ordinary nodes is given in Figure 1(b). The nodes store the label of the
nodes, the data stream of the labels and the timestamp corresponding to the data flow, the data
stream ID and timestamp are stored in a set and one-to-one correspondence.

In the process of constructing PS, when the number of data stream stored in a node is not less
than the minimum support, it is shown that the sequential pattern represented by the root node to the
current node is frequent, and it is regarded as a frequent sequential pattern.

2.3. Algorithm Pisa

Parallel-Pisa is extended on the basis of [4].The main idea of Pisa is to store candidate elements
in PS and find out the frequent sequence patterns. Figure 2 shows the processing flow of Pisa.

Procedure of Pisa：
Each timestamp ti :
For each nodes of the PS in post order：

1) Check the timestamp information in the PS node and delete the expired node that is not within the time window.
2) If the data stream is passed to the element of a node label information，update the data flow within the node and

the corresponding timestamp.
3) If the label of an existing node does not contain a new incoming data item, a new node is added to the PS.
4) Output the frequent sequence pattern according to the threshold.

END

Figure 2 Procedure of Pisa.

If the Pisa is applied to the flow data model in Figure 1(a), with the increase of the number of
nodes in the PS, the time consumed by the serial processing PS is too much. Therefore, due to the
performance factor Pisa can’t produce good performance in frequent pattern mining of stream data.

This paper proposes a kind of the optimization of PS-tree traversal methods, which uses parallel
processing of the primary subtrees in the PS for improving its efficiency.

3. Algorithm Parallel-Pisa

3.1. Detailed Explanation of Algorithm Parallel-Pisa

Figure 3 shows the details of the Parallel-Pisa. The parameters support and LW are the minimum
support and the sliding time window length set by the user respectively. On lines 4-10, if new data
arrives, the PS is processed in parallel, and then the timestamp is updated to the latest moment until
no new data arrives again. In line 6, the function updates the node information in the primary
subtree of the PS-tree in parallel. After the root node has finished processing, the PS has updated the
PS for the time ti+1 and contains the latest sequence information in the time window. In Figure 4, the
handleRoot and handleSubtree operation are presented.

144

Algorithm ParallelPisa(support,LW)
1. var root //PS-tree PS
2. var currentTime // timestamp now
3. var pool // threadPool
4. while (there is still new data)
5. for (each sub in root) // sub is the subtree of PS-tree
6. pool.submit(handleSubtree(sub, data, currentTime, LW, support))
7. Wait for all subtree tasks to finish
8. handleRoot(root, data, currentTime, LW, support)
9. currentTime++
10. pool.shutdown()
END

Figure 3 Algorithm Parallel-Pisa.

In Figure 4(a), the every data item set e is from data streams at line 1, and then the set of data

items in the set e are used to update the input of the PS tree at line 2.

Algorithm handleRoot(root, data, curtime)
1. for (data item set e of each flow in data)
2. for (candidate elements ele in e)
3. if (ele == lable of on of root)
4. if (flow is in root.child.flowList)
5. update timestamp of flow to curtme
6. else
7. create a new flow with curtime
8. else
9. create a new child with ele, flow and

curtime
10. return root.
11. END

(a)

Algorithm handleSubtree(node, data, curtime)
1. for (every flow in node.flowList)
2. if (flow.timestamp <= curtime ‐ LW)
3. delete flow in flowList and continue to next flow
4. if (there if new items set e of flow in data)
5. for (candidate elements ele in e)
6. if (ele is not on the path from root)
7. if (ele == label of one of node.child)
8. if (flow is in node.child.flowList)
9. child.flowList.flow.timestamp = flow.timestamp
10. else
11. create a new flow with flow.timestamp
12. else
13. create a child with ele,flow and flow.timestamp
14. if (node.flowList.size == 0)
15. delete this node and all of its children
16. else if (seq_list.size >= support)
17. output the path from root to node as frequent pattern
END

(b)

Figure 4 (a) Root node processing algorithm. (b) Subtree processing algorithm.

Figure 4(b) shows the specific process of processing the ordinary node in the subtree. Lines 2-3
check the timestamp of the data stream. If the data stream is not within the current time window, the
data stream within the node is deleted and continues to traverse to the next data stream. Lines 4-13
deal with new arrivals, the lines 8-11 update the timestamps of the data streams and data streams in
the nodes. If the corresponding data flows already exist within the nodes, the corresponding
timestamps are updated to ensure that the recurring sequence patterns are not deleted. If the number
of data streams in the node is greater than the minimum support in advance, it means that the
sequence pattern represented by the root node to the current node is frequent.

4. Adaptive Strategy for Parallel Processing

Due to the uncertainty of the stream data, the stream data may be accompanied by explosive
growth or decrease over a certain period of time, which can affect the efficiency and resource use of
the algorithm. Adding the adaptive strategy to the algorithm can reduce the influence of the flow
data change, and is more suitable for the actual use of the flow data in the scene.

This paper summarizes the three factors of adaptive adjustment of the algorithm, namely PS
width, stream data flow rate, thread pool task queue length.

Definition 2(PS width). PS width is equal to the number of child nodes under the PS root node,
indicated by the letter B.

145

Definition 3(Flow rate). Let the number of data streams be N(St) and the number of data items
of all incoming data is N(It), The stream data flow rate at time t is expressed as Vt= N(It)/ N(St)

Figure 5 Adaptive strategy.

As shown in Figure 5, the adaptive rule in the strategy is based on the current time data flow rate
Vt, PS width Bt and the task queue length LQ passed at the last time, and then adjusts the size of the
thread pool. Then Parallel-Pisa started to deal with PS. The adaptation rules are given in Figure 6.

Adaptation rules:
1) If Vt > Vm : Increase the number of threads.
2) If (Vt-Vt-1)/(Vm-Vt-1) >= Tv : Increase the number of threads.
3) If LQ/Bt >= Tb && ((Bt >= Bt-1) or (Vt >= Vt-1)) : Increase the number of threads.
4) If LQ/Bt < Tb &&((Vt < Vt-1) or (Bt < Bt-1)) : Decrease the number of threads.
5) If (Vt-1-Vt)/(Vm-Vt) >= Tv && LQ/Bt < Tb : Decrease the number of threads.

Figure 6 Adaptive adjustment rules.

Vm in the rule represents the maximum flow rate in history and LQ represents the length of the
task queue in the thread pool. Tv and Tb are the two thresholds given by the user. Tv represents the
magnitude of the flow rate, in the range of 0 to 1. If the change in flow rate exceeds the threshold
value Tv, the flow data represents a significant increase or decrease in the current time. Tb represents
the degree of blocking of threads in the thread pool, in the range of 0 to 1. If the value of (LQ/B)
exceeds the threshold value Tb , the current task queue is regarded as a high blocking state and vice
versa as a blocking state of the task queue normal.

 It should be noted that the frequent thread switching will lead to the performance degradation
of the program, so the adaptive adjustment strategy is not an unlimited increase in the thread,
because the algorithm in the convective data processing is a compute-intensive operation, so the
adaptive strategy the maximum number of threads will be set to (CPU * 2).

146

5. Experiment

This section examines Parallel-Pisa in terms of data throughput, efficiency, accuracy, and so on.
The synthetic data sets are generated in a way similar to the IBM data generator in [7] designed for
testing sequential pattern mining algorithms. As Pisa [4], Fast-Pisa [4] and similar to Parallel-Pisa
are using sliding window model for frequent data mining model, and the sliding time window
model is inherently capable of processing the stream data. So later use the above two algorithms
and Parallel-Pisa for comparison. The experiments are executed on a computer with Windows 7,
Intel (R) Core (TM) i7-4790 processor, RAM 8G. All the algorithms are coded in java.

5.1. Data Throughput

This section examines the throughput of the algorithm, comparing Pisa, Fast-Pisa, and
Parallel-Pisa to handle the total amount of data for candidate elements per second. Table 1 gives the
throughput of Pisa, Fast-Pisa and Parallel-Pisa per second under the same window length and
minimum support. In terms of throughput Parallel-Pisa has obvious advantages over the other two
algorithms.

Table 1 Throughput test.

Algorithm Parallel-Pisa Fast-Pisa Pisa
candidate elements(million/sec) 85.1 23.7 7.6

5.2. Efficiency and Result Integrity

Figure 7(a) shows the execution time for three algorithms at different flow rates. In terms of
efficiency, Fast-Pisa and Parallel-Pisa are far higher than Pisa, but Fast-Pisa is an improved
algorithm of Pisa to improve the efficiency of the algorithm at the expense of the accuracy of
mining results. We will experiment with the accuracy of the mining results in next.

 (a) (b)

Figure 7 (a) Performance Testing. (b) Result Integrity.

Figure 7(b) shows the number of results obtained by three algorithms for the same data at
different minimum support levels. With the decrease of the minimum support, the loss rate of
Fast-Pisa mining results is gradually increasing, and the advantages of Parallel-Pisa and Pisa are
becoming more and more obvious. Parallel-Pisa has better results integrity than Fast-Pisa, which
can better assist the user in making decisions.

1

5

25

125

625

3125

15625

2 4 6 8 10 12

U
ni

t S
li

de
 T

im
e

W
in

do
w

E

xe
cu

ti
on

 T
im

e
(m

s)

Number of candidate elements (million / s)

Pisa Fast‐Pisa Parallel‐Pisa

0

200

400

600

800

1000

0.05 0.1 0.2 0.5

N
um

be
r

of
 f

re
qu

en
t s

eq
ue

nc
e

pa
tt

er
ns

 (
te

n
th

ou
sa

nd
)

Minimum support(%)

Fast‐Pisa Parallel‐Pisa Pisa

147

5.3. Adaptive Strategy Effect

Figure 8 shows the Parallel-Pisa adaptive strategy effect by receiving a different number of
candidate elements per second.

Figure 8 Adaptive testing.

It can be observed that Parallel-Pisa with adaptive strategy has always maintained a high level of

efficiency, and its flexibility can be found when compared to an experimental group with a fixed
number of threads of 60. Due to the relationship between the CPU and the inter-thread resource
competition, the increase in the number of threads cannot solve the problem of the performance of
the algorithm. Adaptive strategy allows Parallel-Pisa to deal with the change of stream data more
stably. So that the system can use the resources more reasonably and avoid the unreasonable
number of threads.

6. Conclusion

In this paper, a frequent pattern mining algorithm named Parallel-Pisa that can be applied to
stream data is studied based on the large, infinite and unpredictable characteristics of streaming data.
The existing algorithms are mainly based on single thread, so it is difficult to meet the fast arrival of
streaming data. Parallel-Pisa uses the parallel processing technology to deal with the PS-tree, and at
the same time through the adaptive strategy to increase the unpredictability of convective data
control, so that it can be better applied to frequent data mining in the stream.

Stream data for the pursuit of algorithm efficiency is endless, the next step we will continue to
optimize the algorithm to assess its application in the real data effect.

References

[1] S.Y. Yang, C.M. Chao, P.Z. Chen and C.H. Sun. (2011) Incremental mining of closed sequential patterns in
multiple data streams, Journal of Networks 6(5), 728–735.
[2] C.W. Lin, T.P. Hong and W.H. Lu. (2009) An efficient FUSP-tree update algorithm for deleted data in customer
sequences, in: Fourth International Conference on Innovative Computing, Information and Control, 1491–1449.
[3] T.P. Hong, H.Y. Chen, C.W. Lin and S.T. Li. (July 2008) Incrementally fast updated sequential patterns trees, in:
Proceedings of the Seventh International Conference on Machine Learning and Cybernetics Kunming, 3991–3996.
[4] J.W. Huang, C.Y. Tseng, J.C. Ou and M.S. Chen. (2008) A general model for sequential pattern mining with a
progressive database, IEEE Transactions on Knowledge and Data Engineering 20(9), 1153–1167.
[5] C.W. Lin, T.P. Hong and W.H. Lu. (2009) An efficient FUSP-tree update algorithm for deleted data in customer
sequences, in: Fourth International Conference on Innovative Computing, Information and Control, 1491–1449.
[6] A. Mhatre, M. Verma and D. Toshniwal. (2009) Extracting sequential patterns from progressive databases: A
weighted approach, in: IEEE International Conference on Signal Processing Systems, 788–792.
[7] R. Agrawal and R. Srikant. (1995) “Mining Sequential Patterns,” Proc. 11th Int’l Conf. Data Eng. (ICDE ’95), pp.
3-14, Feb.
[8] Bhawna Mallick, Deepak Garg. (2013) Incremental mining of sequential patterns: Progress and challenges, in :

0

50

100

25000 50000 75000 100000

U
ni

t S
lid

e
T

im
e

W
in

do
w

 E
xe

cu
tio

n
T

im
e

(m
s)

Number of candidate elements per second (million / sec)

Thread adaptive Thread:2 Thread:4 Thread:8 Thread:60

148

Intelligent Data Analysis 17 , 507-530.
[9] Hui Chen,LihChyun Shu,Jiali Xia,Qingshan Deng. (2012) Mining frequent patterns in a varying-size sliding
window of online transactional data streams[J]. Information Sciences .
[10] Mahmood Deypir,Mohammad Hadi Sadreddini. (2011) A dynamic layout of sliding window for frequent itemset
mining over data streams[J]. The Journal of Systems & Software . (3)

149

