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Abstract. Frequent sequential pattern mining is an important field in data mining. 
Compared with the static data, the stream data is a single scan data obtained in a 
continuous and real-time way. The frequent pattern mining algorithm of traditional static 
sequence database has been difficult to meet the frequent pattern mining requirements for 
streaming data. The traditional serial processing method is time-consuming and cannot 
meet the requirements of high performance processing. Based on the existing Pisa 
algorithm, this paper presents a parallel algorithm named Parallel-Pisa, it can adjust the 
parallel strategy according to the different velocity of the stream data to improve the 
efficiency of the algorithm so that it can be better applied to frequent sequence pattern 
mining of stream data. 

1. Introduction 

With the development and application of Internet and communication technology, economic, natural 
sciences, engineering and other fields have accumulated more and more data. Which has a class of 
important data, can reflect the data in the context of the relationship, known as time series data. 
Frequent pattern mining for time series data can identify the periodic and frequently occurring 
patterns of data in the order of time, helping decision makers to make more informed decisions. 

In order to mine frequent patterns in time series data, researchers have made continuous 
improvement to the frequent pattern mining of static database. The papers [1, 2, 3] use the 
incremental mining concept so that the algorithm can excavate the newly added data set on the basis 
of the original static data, which known as incremental mining. At the same time, due to limited 
storage space or obsolete data is no longer valuable and other reasons, sometimes need to delete the 
excavation of the object. In order to solve this problem, the papers [4,5,6] use the progressive 
mining concept to make the algorithm support the increase and deletion of the data set in the mining 
process. This mining method is called progressive mining. Parallel-Pisa will use the concept of 
progressive mining to mining time series data to find out the cyclical changes and frequent 
sequence patterns. 

In real life a large amount of time series data are constantly real-time output and difficult to 
preserve, such as the real-time data of the stock exchange, interactive data in a network and so on. 
This kind of time series is called stream data. The frequent pattern mining of static data can‘t meet 
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In Figure 1(a), S01, S02,..., Sn represent different data flows, A, B, C, and D represent different 
data items, t1、t2、...、tk represent timestamps, the data contained in the timestamp ti represents a 
different set of data items e. As time goes on, each stream continues to deliver real-time streaming 
data. Dbp,q represents a collection of data items in each data stream between timestamp p and 
timestamp q.  

2.2. PS-tree 

This section introduces the PS-tree data structure (PS) which is borrowed from [4]. There are 
two kinds of nodes in the PS. The root node stores only a series of ordinary nodes as his child nodes. 
The data structure of the ordinary nodes is given in Figure 1(b). The nodes store the label of the 
nodes, the data stream of the labels and the timestamp corresponding to the data flow, the data 
stream ID and timestamp are stored in a set and one-to-one correspondence. 

In the process of constructing PS, when the number of data stream stored in a node is not less 
than the minimum support, it is shown that the sequential pattern represented by the root node to the 
current node is frequent, and it is regarded as a frequent sequential pattern. 

2.3. Algorithm Pisa 

Parallel-Pisa is extended on the basis of [4].The main idea of Pisa is to store candidate elements 
in PS and find out the frequent sequence patterns. Figure 2 shows the processing flow of Pisa.  

 
Procedure of Pisa： 
Each timestamp ti : 
For each nodes of the PS in post order： 

1) Check the timestamp information in the PS node and delete the expired node that is not within the time window. 
2) If the data stream is passed to the element of a node label information，update the data flow within the node and 

the corresponding timestamp. 
3) If the label of an existing node does not contain a new incoming data item, a new node is added to the PS. 
4) Output the frequent sequence pattern according to the threshold. 

END 

Figure 2 Procedure of Pisa. 

If the Pisa is applied to the flow data model in Figure 1(a), with the increase of the number of 
nodes in the PS, the time consumed by the serial processing PS is too much. Therefore, due to the 
performance factor Pisa can’t produce good performance in frequent pattern mining of stream data. 

This paper proposes a kind of the optimization of PS-tree traversal methods, which uses parallel 
processing of the primary subtrees in the PS for improving its efficiency. 

3. Algorithm Parallel-Pisa 

3.1. Detailed Explanation of Algorithm Parallel-Pisa 

Figure 3 shows the details of the Parallel-Pisa. The parameters support and LW are the minimum 
support and the sliding time window length set by the user respectively. On lines 4-10, if new data 
arrives, the PS is processed in parallel, and then the timestamp is updated to the latest moment until 
no new data arrives again. In line 6, the function updates the node information in the primary 
subtree of the PS-tree in parallel. After the root node has finished processing, the PS has updated the 
PS for the time ti+1 and contains the latest sequence information in the time window. In Figure 4, the 
handleRoot and handleSubtree operation are presented. 
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Algorithm ParallelPisa(support,LW) 
1. var root                            //PS-tree PS  
2. var currentTime                     // timestamp now 
3. var pool                           // threadPool  
4. while (there is still new data) 
5. for (each sub in root)              // sub is the subtree of PS-tree 
6.  pool.submit(handleSubtree(sub, data, currentTime, LW, support)) 
7.  Wait for all subtree tasks to finish 
8. handleRoot(root, data, currentTime, LW, support) 
9.  currentTime++ 
10. pool.shutdown() 
END 

Figure 3 Algorithm Parallel-Pisa. 

 
In Figure 4(a), the every data item set e is from data streams at line 1, and then the set of data 

items in the set e are used to update the input of the PS tree at line 2. 
 

Algorithm handleRoot(root, data, curtime) 
1. for (data item set e of each flow in data) 
2.     for (candidate elements ele in e) 
3.         if (ele == lable of on of root) 
4.             if (flow is in root.child.flowList) 
5.                 update timestamp of flow to curtme 
6.             else 
7.                 create a new flow with curtime 
8.         else   
9.                 create  a  new  child  with  ele,  flow  and 

curtime 
10. return root. 
11. END 
 
 
 
 
 
 
 
 

(a) 

Algorithm handleSubtree(node, data, curtime) 
1. for (every flow in node.flowList) 
2.     if (flow.timestamp <= curtime ‐ LW) 
3.         delete flow in flowList and continue to next flow 
4.     if (there if new items set e of flow in data) 
5.         for (candidate elements ele in e) 
6.             if (ele is not on the path from root) 
7.                 if (ele == label of one of node.child) 
8.                     if (flow is in node.child.flowList) 
9.                         child.flowList.flow.timestamp = flow.timestamp 
10.                     else 
11.                         create a new flow with flow.timestamp 
12.                 else   
13.                     create a child with ele,flow and flow.timestamp 
14. if (node.flowList.size == 0) 
15.     delete this node and all of its children 
16. else if (seq_list.size >= support) 
17.     output the path from root to node as frequent pattern 
END 
 

(b) 

Figure 4 (a) Root node processing algorithm. (b) Subtree processing algorithm. 

Figure 4(b) shows the specific process of processing the ordinary node in the subtree. Lines 2-3 
check the timestamp of the data stream. If the data stream is not within the current time window, the 
data stream within the node is deleted and continues to traverse to the next data stream. Lines 4-13 
deal with new arrivals, the lines 8-11 update the timestamps of the data streams and data streams in 
the nodes. If the corresponding data flows already exist within the nodes, the corresponding 
timestamps are updated to ensure that the recurring sequence patterns are not deleted. If the number 
of data streams in the node is greater than the minimum support in advance, it means that the 
sequence pattern represented by the root node to the current node is frequent. 

4. Adaptive Strategy for Parallel Processing 

Due to the uncertainty of the stream data, the stream data may be accompanied by explosive 
growth or decrease over a certain period of time, which can affect the efficiency and resource use of 
the algorithm. Adding the adaptive strategy to the algorithm can reduce the influence of the flow 
data change, and is more suitable for the actual use of the flow data in the scene. 

This paper summarizes the three factors of adaptive adjustment of the algorithm, namely PS 
width, stream data flow rate, thread pool task queue length. 

Definition 2(PS width). PS width is equal to the number of child nodes under the PS root node, 
indicated by the letter B.  
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Definition 3(Flow rate). Let the number of data streams be N(St) and the number of data items 
of all incoming data is N(It), The stream data flow rate at time t is expressed as Vt= N(It)/ N(St) 
 

 

Figure 5 Adaptive strategy. 

As shown in Figure 5, the adaptive rule in the strategy is based on the current time data flow rate 
Vt, PS width Bt and the task queue length LQ passed at the last time, and then adjusts the size of the 
thread pool. Then Parallel-Pisa started to deal with PS. The adaptation rules are given in Figure 6. 
 

Adaptation rules: 
1) If Vt > Vm : Increase the number of threads. 
2) If (Vt-Vt-1)/(Vm-Vt-1) >= Tv : Increase the number of threads. 
3) If LQ/Bt >= Tb && ((Bt >= Bt-1) or (Vt >= Vt-1)) : Increase the number of threads. 
4) If LQ/Bt < Tb &&(( Vt < Vt-1) or (Bt < Bt-1)) : Decrease the number of threads. 
5) If (Vt-1-Vt)/(Vm-Vt) >= Tv && LQ/Bt < Tb  : Decrease the number of threads. 

Figure 6 Adaptive adjustment rules. 

Vm in the rule represents the maximum flow rate in history and LQ represents the length of the 
task queue in the thread pool. Tv and Tb are the two thresholds given by the user. Tv represents the 
magnitude of the flow rate, in the range of 0 to 1. If the change in flow rate exceeds the threshold 
value Tv, the flow data represents a significant increase or decrease in the current time. Tb represents 
the degree of blocking of threads in the thread pool, in the range of 0 to 1. If the value of (LQ/B) 
exceeds the threshold value Tb , the current task queue is regarded as a high blocking state and vice 
versa as a blocking state of the task queue normal. 

 It should be noted that the frequent thread switching will lead to the performance degradation 
of the program, so the adaptive adjustment strategy is not an unlimited increase in the thread, 
because the algorithm in the convective data processing is a compute-intensive operation, so the 
adaptive strategy the maximum number of threads will be set to (CPU * 2). 
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5. Experiment 

This section examines Parallel-Pisa in terms of data throughput, efficiency, accuracy, and so on. 
The synthetic data sets are generated in a way similar to the IBM data generator in [7] designed for 
testing sequential pattern mining algorithms. As Pisa [4], Fast-Pisa [4] and similar to Parallel-Pisa 
are using sliding window model for frequent data mining model, and the sliding time window 
model is inherently capable of processing the stream data. So later use the above two algorithms 
and Parallel-Pisa for comparison. The experiments are executed on a computer with Windows 7, 
Intel (R) Core (TM) i7-4790 processor, RAM 8G. All the algorithms are coded in java. 

5.1. Data Throughput 

This section examines the throughput of the algorithm, comparing Pisa, Fast-Pisa, and 
Parallel-Pisa to handle the total amount of data for candidate elements per second. Table 1 gives the 
throughput of Pisa, Fast-Pisa and Parallel-Pisa per second under the same window length and 
minimum support. In terms of throughput Parallel-Pisa has obvious advantages over the other two 
algorithms. 

Table 1 Throughput test. 

Algorithm Parallel-Pisa Fast-Pisa Pisa 
candidate elements(million/sec) 85.1 23.7 7.6 

5.2. Efficiency and Result Integrity 

Figure 7(a) shows the execution time for three algorithms at different flow rates. In terms of 
efficiency, Fast-Pisa and Parallel-Pisa are far higher than Pisa, but Fast-Pisa is an improved 
algorithm of Pisa to improve the efficiency of the algorithm at the expense of the accuracy of 
mining results. We will experiment with the accuracy of the mining results in next. 
 

     
                  (a)                                    (b) 

Figure 7 (a) Performance Testing. (b) Result Integrity. 

Figure 7(b) shows the number of results obtained by three algorithms for the same data at 
different minimum support levels. With the decrease of the minimum support, the loss rate of 
Fast-Pisa mining results is gradually increasing, and the advantages of Parallel-Pisa and Pisa are 
becoming more and more obvious. Parallel-Pisa has better results integrity than Fast-Pisa, which 
can better assist the user in making decisions. 
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5.3. Adaptive Strategy Effect 

Figure 8 shows the Parallel-Pisa adaptive strategy effect by receiving a different number of 
candidate elements per second.  
 

 
Figure 8 Adaptive testing. 

 
It can be observed that Parallel-Pisa with adaptive strategy has always maintained a high level of 

efficiency, and its flexibility can be found when compared to an experimental group with a fixed 
number of threads of 60. Due to the relationship between the CPU and the inter-thread resource 
competition, the increase in the number of threads cannot solve the problem of the performance of 
the algorithm. Adaptive strategy allows Parallel-Pisa to deal with the change of stream data more 
stably. So that the system can use the resources more reasonably and avoid the unreasonable 
number of threads. 

6. Conclusion 

In this paper, a frequent pattern mining algorithm named Parallel-Pisa that can be applied to 
stream data is studied based on the large, infinite and unpredictable characteristics of streaming data. 
The existing algorithms are mainly based on single thread, so it is difficult to meet the fast arrival of 
streaming data. Parallel-Pisa uses the parallel processing technology to deal with the PS-tree, and at 
the same time through the adaptive strategy to increase the unpredictability of convective data 
control, so that it can be better applied to frequent data mining in the stream. 

Stream data for the pursuit of algorithm efficiency is endless, the next step we will continue to 
optimize the algorithm to assess its application in the real data effect. 
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